3ournal of Organometallic Chemistry, 90 (1975) C13-C16 *0* **Elsevier Sequoia S-A., Lausaone - Printed in The Netherlands**

Preliminary communication

FLUXIONAL BEHAVIOUR OF μ_3 -(ETHAN-1-YL-2-YLIDYNE)-DI- μ - $HYDRIDO-triangulo-TRIS(TRICARBONYLOSMIUM)(3 Os-Os)$

WILLIAM G. JACKSON, BRtAN F.G. JOHNSON and JACK LEWIS *University Chemical Laboratory. Lensfield Road. Cambridge CB2 I EN(Greot Brltam)* **(Received February 22nd, 1975)**

Summary

The two H-exchange phenomena observed with $H_2 Os_3 (CO)_9 (C=CH_2)$ **have** been shown to occur by the interchange of Os-H-OS bridges.

Deeming and Underhill [1] have shown that the complex H_2Os_3 **(CO), -**(C=CHz j (I) **undergoes two independent fluvional processes. First there is the interchange** of the two olefinic protons HC and Hd (Scheme 1) and secondly **the interchange of the two hydrides** Ha and Hb (Scheme 2). Although several mechanisms were proposed [l] to account for these phenomena, **none have been substantiated by** experiment. We now report esperiments which support the view that each process occurs via the movement of bridging hydride ligands between the edges of the Os₃ triangle.

In their report, Deeming and Underhill suggested that the equilibration of the olefinic protons H^c and H^d was brought about by the process shown in Scheme 1 in which hydride transfer from one edge $(Os(1)-Os(3))$ of the osmium triangle to a vacant edge $(Os(2)-Os(3))$ occurred. This could come about by one of three processes: (i) the direct movement of the bridging hydrido-ligand between the two edges (eqn. 1a) (i.e. via the intermediacy of a terminal Os -H arrangement or by tunnelling); (ii) H-migration first to the bound $C=CH_2$ fragment and then to the vacant edge (eqn. 1b); or (iii) rotation about the olefinic C-C bond **(eqn. lc).**

Similar processes may also he considered as a means of equilibration of protons H^a and H^b (eqns. 2a-2c) although the processes 1 and 2 must be mutually exclusive since two different equilibration temperatures are observed. We now report **experiments which clearly show that mechanisms** lb, Ic, 2b and 2c may be excluded.

The complex $HDOs₃(CO)₉(C=CH₂)$ (II) has been prepared by the method outlined in Scheme 3. On the basis of 'H NMR **and mass spectros**copic evidence we have been able to demonstrate that in this complex the D-ligand is equally distributed between the two available proton sites H^a and

SCHEME 2. POSSIBLE MECHANISMS FOR $\text{H}^\text{R}_{\text{**}}\text{H}^\text{b}$ INTERCONVERSION

SCHEME 1. POSSIBLE MECHANISMS FOR $\text{H}^{\text{C}}\!\!\Rightarrow\!\!\text{H}^{\text{d}}$ INTERCONVERSION

 $(1c)$

 (12)

 H^b , and that no interchange of protons H^c and H^d with D occurs after several hours at 40° C. D-scrambling amongst all from inequivalent sites occurs only on heating the complex at 100°C. The coalescence temperature for the process $H^c \rightleftarrows H^d$ was established as $80 \pm 2^\circ$ C for I and $88 \pm 2^\circ$ C for II. These results clearly indicate that the exchange is an intramolecular process and rule out pathway lb which requires instantaneous S-scrambling at temperatures well below 100°C.

H₂ Os₃(CO)₉(C=CH₂)
$$
\xrightarrow{CF, CO_2^2H}
$$
 H₂ DOS₃(CO)₉(C=CH₂)⁺ $\xrightarrow{H_2O}$
HDOs₃(CO)₉ (C=CH₂) + I

SCHEME 3. PREPARATION OF HDOs,(CO),(C=CH,)

Process 1c which involves rotation about the $C-C$ axis would lead to H^c and \rm{H}^d interconversion but would necessitate Os(3)—C bond cleavage. This possibility cannot be excluded directly from studies on I but may be excluded from studies of complex $H_2Os_3(CO)_9$ [C=C(Me)CH₂ CHMe₂] (III) which is structurally similar and may be prepared from the reaction of $\mathrm{Os}_3(\mathrm{CO})_{12}$ with H₂ C=C(Me)CH₂ CHMe₂. The ¹H NMR of III in CDCl₃ at 60°C shows the following features: $\tau7.52$, m, $1\mathrm{H^e}$; $\tau7.54$, s, $3\mathrm{H^c}$; $\tau7.60$, m, $\mathrm{H^a}$ + $\mathrm{H^a}$; $\tau9.05$, d, 3H^t; J_{de} = 6.5 Hz, $_79.08$, d, $3H$ ^t , J_{ef} = 6.5 Hz; and 729.60 , s, H^a + H^D. At -40° C the singlet at τ 29.60 separates into singlets at τ 28.50 (1H^b) and τ 30.80 (1H^a) as expected for the two inequivalent hydride positions. The two diastereomeric forms IIIa and IIJb which arise from the presence of the two asymmetric carbon atoms C^{α} and C^{β} , are clearly apparent at -60° when two methyl resonances (H^f and H^{f'}) are observed at τ 7.48, s, 1.5H and τ 7.68, s, 1.5H. Above -40° C the isomers IIIa and IIIb undergo interconversion by hydride transfer $(Os(1)-H^b-Os(3))$ = Os(2)-H^{b--}Os(3)) which destroys the chirality at C^{β} . However, the observed diastereotopic splitting (\approx 3Hz at 100 MHz) in the

isopropyl methyl (H^f and H^f) remains up to +60°C (the highest temperature studied). Thus chirality at C^{α} is retained. This result establishes that the $Os-C^{\alpha}$ bond is intact under the conditions of H-interchange, clearly demonstrating that the bond-breaking mechanism lc is not operative. This result also establishes that any mechanism involving OS-C bond cleavage cannot be operative under conditions of total H-fluxionality thus ruling out the possibility that interconversion $H^a \rightleftharpoons H^b$ can occur via either mechanism 2b or 2c.

These observations verify the initial prediction [1] that both $H^c \rightleftharpoons H^d$ and H^a \div H^b interconversion occur directly by hydride migration from one edge **of the metal triangle to another.**

We thank the SRC for financial support and Johnson Matthey and Co. Ltd. **for their generous loan of osmium tetroxide.**

Reference

1 A.J. Deeming and M. Underhill, J. Chem. Soc., (1974) 1415.